
The Design of the

Everyman

Hard Real-time Kernel

Barry Watson

EVERYMAN Scheduling

DM

EDF

Resource

Access

SRP

Comm-

unication

CAB

Copyright c© 2014 Barry Watson
All rights reserved
www.barrywatson.se

CONTENTS

Contents i

List of Figures iii

List of Tables iii

List of Listings iv

Introduction 1

We define our goal and start our journey.

1 Step 1 3

Our basic kernel is introduced.
1.1 What is hard real-time? . 3
1.2 The need for scheduling . 3
1.3 The theory behind real-time scheduling 5
1.4 Hidden costs . 11
1.5 Which algorithm should I use? 15
1.6 The implementation . 15

2 Step 2 27

We learn to share resources without unbounded blocking or priority
inversion.
2.1 Blocking . 27
2.2 Stack Resource Policy . 29
2.3 Feasibility Tests . 31
2.4 Implementation . 32

3 Step 3 39

We build a communications primitive which does not cause blocking.
3.1 Cyclical Asynchronous Buffers 40
3.2 Implementation . 42

A The SDL Tool 47

A.1 Using SDL . 47
A.2 Implementation . 50

B The BSP and Kernel API 51

B.1 BSP deadline overrun . 51
B.2 BSP disable interrupts . 51
B.3 BSP enable interrupts . 51
B.4 BSP init exception vectors 52
B.5 BSP init clock . 52
B.6 HOOK job arrive . 52
B.7 HOOK job finish . 52
B.8 HOOK job start . 53

i

B.9 KERN cab buffer data . 53
B.10 KERN cab create . 53
B.11 KERN cab get . 54
B.12 KERN cab put . 54
B.13 KERN cab reserve . 54
B.14 KERN cab unget . 55
B.15 KERN clock tick . 55
B.16 KERN init . 55
B.17 KERN job arrive . 56
B.18 KERN job create . 56
B.19 KERN resource create . 56
B.20 KERN resource release . 57
B.21 KERN resource request . 58

Nomenclature 59

Bibliography 61

Index 63

LIST OF FIGURES

1.1 The job. 4
1.2 Job Timing. 4
1.3 Job preemption. 5
1.4 Processor demand. 9
1.5 EDF schedule. 10

2.1 Resource blocking. 28
2.2 Resource deadlock. 28
2.3 EDF preemption levels. 30
2.4 SRP example. 31

3.1 A Simple CAB example. 40
3.2 Using a CAB for multilevel control. 41
3.3 CAB buffer dimensioning. 45

A.1 SDL Grammar in BNF. 47

LIST OF TABLES

1.1 Deadline Monotonic example job set. 7
1.2 Earliest Deadline First example job set. 9
1.3 Interrupt example. 12
1.4 Interrupt handling cost and interference. 12

2.1 SRP example job set. 31
2.2 Resource ceiling table. 31

3.1 Multilevel control CAB example. 41

iii

LIST OF LISTINGS

1.1 Misc. types . 17
1.2 Job types . 18
1.3 Intro . 19
1.4 system lock . 19
1.5 system unlock . 19
1.6 stack push . 19
1.7 stack pop . 19
1.8 KERN job create . 20
1.9 job add to pending jobs list 20
1.10 job arrive . 21
1.11 job add to inactive jobs list 22
1.12 job finish . 23
1.13 job list unlink . 23
1.14 job preempt . 24
1.15 KERN clock tick . 25
1.16 KERN job arrive . 26
2.1 KERN job t . 32
2.2 KERN resource t . 33
2.3 Resource globals . 33
2.4 system ceiling . 33
2.5 KERN resource request . 34
2.6 KERN resource release . 34
2.7 KERN resource create . 35
2.8 KERN job create . 35
2.9 KERN job preempt . 36
3.1 KERN cab t and KERN cab buffer t 42
3.2 KERN cab get . 43
3.3 KERN cab unget . 43
3.4 KERN cab reserve . 44
3.5 KERN cab put . 44
3.6 KERN cab create . 45
A.1 Example SDL file. 48
A.2 SDL output, prologue . 49
A.3 SDL output, epilogue . 49

iv

INTRODUCTION

The goal of this book is to introduce the everyman hard real-time kernel. The
kernel has been designed to be suitable for hard real-time systems development,
to be easily understood by a single programmer, and to use as little memory
as possible.

The book is divided into three steps.

Step 1 Here we’ll see two scheduling algorithms for hard-real time systems.
We then go on to the design and implementation of a kernel which im-
plements these algorithms.

Step 2 In this step we’ll take a look at resource access protocols used with
semaphores. We’ll then build upon the kernel described in Step 1 and im-
plement semaphores which eliminate deadlock, livelock, and unbounded
blocking.

Step 3 We then move on to discuss the communication primitives used in
modern operating systems and their applicability to hard real-time sys-
tems. We’ll then build upon the kernel described in Step 2 and implement
a communication primitive which is suited for the needs of hard real-time
systems.

At the end of the book you will have seen the design and implementation
of the everyman kernel and hopefully have a better understanding of what
it takes to build reliable hard real-time systems. You should also have the
required knowledge to evaluate the kernels and operating systems that are
available in today’s market.

1

STEP 1

In this step build a basic kernel which schedules independent jobs
depending upon their timing characteristics.

1.1 What is hard real-time?

Sometimes we build computer systems that are not self contained. These sys-
tems have to interact either with the physical world we live in or other computer
systems. It is often the case that these external environments place timing con-
straints on the systems we build. To give some examples, I’ve been involved
with the construction of software that had to sample the temperature of molten
iron at a fixed frequency so as to accurately determine graphite content via the
shape of a cooling curve. I’ve also helped write software that controlled a slave
microprocessor that had to react to a serial bus clock signal from its master
within a certain deadline to avoid a crash. These monitoring and control appli-
cations are textbook examples of real-time systems — systems which consist of
a set of code routines each of which need to execute at a specified frequency and
are constrained to finish their execution within a certain deadline. Depending
on just how “hard” this constraint is we can divide systems into two groups.
Not surprisingly these groups are called soft and hard. A soft real-time system
can tolerate a missed deadline but system performance is degraded. A hard
real-time system on the other hand will see a missed deadline as a complete
failure. The temperature measuring example was soft; if our timing was off
it didn’t matter that much as the metallurgist’s calculation algorithms could
tolerate sampling jitter. The serial bus clock example I gave was hard; if we
missed the timing then the system would crash; we had no workaround.

In this book we’ll focus on hard real-time systems. In some ways, hard
real-time is simpler than soft real-time.

1.2 The need for scheduling

If we build reasonably complex real-time systems then we’ll have several dif-
ferent code routines each with their own periods of execution. Sooner or later
we’ll have a situation where we have more code routines that need to be exe-
cuted than we have processors that can execute them. To solve this problem
we need some kind of mechanism that decides which code routine will receive
processor attention. This mechanism is called a scheduling algorithm and the
bright minds of industry and academia have come up with such algorithms for
real-time systems along with mathematical tools which give us implementors
the chance to analyse our systems to ensure we can meet our deadlines.

We’re going to look at two of these scheduling algorithms but before we get
into the specifics of algorithms and mathematics, we need to agree on some
terms. All of the algorithms you will see traffic in jobs. These are the basic
units of scheduling and we’ll denote them with the symbol J . Each job will
be assigned a code function to be executed by a processor. Since the scheduler
doesn’t need to know the specifics of the function we won’t give it a symbol
here. However, the scheduler does need to know how much processor time this
code function will need to execute in the worst case. This time is denoted with

3

4 Step 1

the symbol C. In figure 1.1 we see a job which takes C = 2 time units to
execute.

clk

t=0 t=1 t=2 t=3 t=4 t=5

J

Figure 1.1: The job.

Because the code is to be executed at a fixed frequency, we’ll need to give
each job a period which will determine the time between separate instances of
code execution. The period is denoted by T and we’ll assume that all jobs start
their first period at time zero. As real-time code executions have a deadline
constraint, we’ll also give each job a deadline relative to the the start of each
job execution period. This is denoted by D. Figure 1.2 shows these timing
specifications graphically.

clk

t=0 t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=8 t=9

J

T T

D D

Figure 1.2: Job Timing.

As far as any scheduling algorithm is concerned, jobs will be in one of three
states: current, pending, or, inactive. The current state will be used for a job
which is currently executing. We’re only going to discuss uniprocessor machines
so at any given time no more than one job can be in the current state. Note
that it may be possible for no jobs to be in the current state. An inactive job
is one which is waiting for the the start of its next period of activation. These
inactive jobs do not compete for the processor. When the time comes for the
start of the next period for an inactive job then that job will move into the
pending state. All pending jobs compete for the processor’s time. As we can
see, jobs will move from inactive to pending, then from pending to current.
When they have finished executing they will be inactive again.

Moving on to mathematics, we’ll need to understand two functions. The
floor function, which is written like this ⌊x⌋, calculates the largest integer
that is less than or equal to x. For example ⌊3.14⌋ = 3, ⌊−3.14⌋ = −4, and
⌊3⌋ = 3. The ceiling function, which is written like this ⌈x⌉, calculates the
smallest integer that is greater than or equal to x. For example ⌈3.14⌉ = 4,
⌈−3.14⌉ = −3, and ⌈3⌉ = 3. These two functions help us reason in terms of job

1.3. The theory behind real-time scheduling 5

periods. Let’s say we have a job with a period of 3 time units. If the system
runs for 10 time units then we know that the job has 10

3
= 3.333 periods.

⌈ 10

3
⌉ = 4 tells us how many times the job’s period has started. ⌊ 10

3
⌋ = 3 tells

us how many complete periods have occurred.

1.3 The theory behind real-time scheduling

Now we’re ready to look at two real-time scheduling algorithms. These al-
gorithms will be priority driven and preemptive. Every job in the current or
pending state will have a priority associated with it. These algorithms are
designed to make sure that at any given time the job in the current state has
a priority higher than, or at least equal to, the highest priority pending job.
Our two algorithms only differ from each other in what priority they associate
with a job.

As time progresses, it may well be the case that a job moves from the
inactive state to the pending state and that this job actually has a higher
priority than the job in the current state. If this should happen then the
current job has its execution suspended and it is moved back into the pending
state. The highest priority job among all pending jobs is then moved into the
current state. This is called a preemption and it is shown graphically in figure
1.3 where J2 is preempted at t = 4 by J1 which has a higher priority.

clk

t=0 t=1 t=2 t=3 t=4 t=5 t=6

J1

J2

Figure 1.3: Job preemption.

Each algorithm that is discussed will also have a feasibility test. If our job
sets pass the test then we’ll have a guarantee that every job will always meet
its deadline.

Deadline Monotonic

The year 1973 saw the introduction of the Rate Monotonic (RM) algorithm
[CL73]. The priority assignment rule with this algorithm is very simple. A
job with a certain frequency of activation is given a higher priority than any
job with a lower frequency of activation. To describe this with terms we have
already introduced, a job’s priority is inversely proportional to its period.

With the assumption that a job’s relative deadline was equal to the job’s
period, the inventors of the algorithm proved that a set of n jobs could be
successfully scheduled with RM if the following condition held:

n
∑

i=1

Ci

Ti

≤ n(2
1

n − 1)

6 Step 1

In this equation Ci

Ti
is the fraction of the total processor time taken up by Ji.

The algorithm’s inventors also showed that as n increases, n(2
1

n −1) approaches
0.69. This equation is an example of a feasibility test. This particular test is
very easy to apply: just sum up all the Ci

Ti
and compare the result with 0.69.

However, the RM feasibility test is what is known as sufficient but not necessary.
That is to say there may be a set of jobs which leads to a processor utilisation
of over n(2

1

n − 1) which may still have a feasible schedule. Such jobs sets are
characterised by harmonic job activation frequencies.

One of the problems with RM is that many systems will need job deadlines
shorter than the job’s period which violates the assumption mentioned earlier.
A solution to this problem arrived in 1982 with the introduction of the Deadline
Monotonic (DM) algorithm [JL82]. With DM, a job’s priority is inversely
proportional to its relative deadline. That is to say, the shorter the relative
deadline, the higher the priority. RM can be seen as a special case of DM where
each job’s relative deadline is equal to the its period. However, the similarities
end there. The “69%” feasibility test which we saw earlier doesn’t work with
DM.

The DM feasibility test will involve calculating how long it takes a job to go
from the start of its period to the point where it finishes execution. We’ll call
this length of time the response time and denote it with R. After calculating
R we then compare it with the job’s relative deadline. If it is shorter, then this
job passes the test, otherwise it fails because a deadline can be missed. We
have to check the feasibility of every job we define.

Let’s assume we have a set of n jobs, {J1, ..., Jn}, where J1 has the highest
priority and Jn the lowest. We can say that for a given job Ji, Ri will be equal
to the job’s worst case execution time Ci plus all of the interference given by the
execution of higher priority jobs. Our first guess at this interference time could

be
∑i−1

k=1

⌈

Ci

Tk

⌉

Ck. The term
⌈

Ci

Tk

⌉

gives us the number of times Jk executes

during Ci and when we multiply this with Ck we have the total interference
from Jk. However, this isn’t quite correct. The problem lies with the use of
⌈

Ci

Tk

⌉

. We need to calculate the total interference during the response time,

not just during Ci which is only the processor time needed for Ji. What we

want is
⌈

Ri

Tk

⌉

, which leads us to

Ri = Ci +

i−1
∑

k=1

⌈

Ri

Tk

⌉

Ck

Since Ri appears on both sides of the equation we have a recurrence relation
and we need to solve it for Ri. To do this we take a first “guess” at the response
time and use this for the Ri on the right hand side then calculate the left hand
side Ri. If the calculated Ri differs from the guessed Ri then we just substitute
the left hand side Ri into the right hand side and recalculate. We repeat this
until we calculate the same value for Ri twice. Unlike the RM feasibility test,
this test is both sufficient and necessary. That is to say, job sets that pass the
test are guaranteed to meet every deadline. Job sets that fail can experience
missed deadlines.

Algorithms are generally best explained by showing examples. Table 1.1
shows an example set of jobs with period, execution time, and deadline. We’ll

1.3. The theory behind real-time scheduling 7

Table 1.1: Deadline Monotonic example job set.

Job T C D

J1 10 1 5
J2 15 3 10
J3 100 50 75

now calculate the response time for J3 and see if it is within the deadline of
75. First we take the initial guess at R3 to be equal to C3, that is to say 50.

R3 = 50 +
2

∑

k=1

⌈

50

Tk

⌉

Ck

R3 = 50 +

⌈

50

10

⌉

1 +

⌈

50

15

⌉

3 = 50 + 5 + 12 = 67

Our calculated R3 doesn’t equal our guess of 50 so we substitute 67 for R3 on
the right hand side and recalculate.

R3 = 50 +

⌈

67

10

⌉

1 +

⌈

67

15

⌉

3 = 50 + 7 + 15 = 72

Substitute again

R3 = 50 +

⌈

72

10

⌉

1 +

⌈

72

15

⌉

3 = 50 + 8 + 15 = 73

And again

R3 = 50 +

⌈

73

10

⌉

1 +

⌈

73

15

⌉

3 = 50 + 8 + 15 = 73

We see that R3 has stabilised at 73 and this is the response time for J3. Since
73 is less than the relative deadline for J3 which is 75, we know that this job
can be scheduled.

The relationships between job priorities assigned with DM are static. If
Jk has a higher priority than Jl then this never changes. This is quite useful
if you have a real-time kernel which implements a priority driven first come
first served scheduling algorithm, e.g. POSIX.4 real-time extensions to Unix
[Gal95]. In these cases we just think of our jobs being processes and assign our
priorities according to DM then let the system’s scheduler take care of the rest.

Earliest Deadline First

Our next algorithm is called Earliest Deadline First (EDF). With EDF, priority
assignment is inversely proportional to absolute deadline. If we take two jobs,
J1 (T1 = 3, D1 = 3) and J2 (T2 = 10, D2 = 10), we see that with DM, J1 would
always have a higher priority than J2. However, with EDF, J1 would have a
higher priority than J2 for its first three periods but not its fourth period where
the absolute deadline for J1 would be 12 which is greater than the absolute
deadline for J2 which is 10. The relationship between job priorities is, as
you can see, dynamic. This unfortunately causes problems with the feasibility

8 Step 1

test we used with DM. That test assumed job priorities were static when we
calculated the interference from higher priority jobs. This means we cannot
apply the feasibility test we defined for use with DM.

The basic idea behind the EDF feasibility test is to calculate how much
processor time is needed at every absolute deadline in the schedule and check
that this doesn’t exceed the actual processor time available.

At first glance we might think that if our system runs for many years then
it would take a long time to analyse every deadline. However, we don’t need
to consider the system’s entire lifetime. Since we’re dealing with periodic jobs,
we find that our schedules are built up from patterns, or subschedules, which
are repeated time and time again. Imagine two jobs with T1 = 3 and T2 = 4,
looking at a schedule we would see the same pattern every 12 time units. With
T1 = 5 and T2 = 10, we would see a pattern repeated every 10 time units. If we
can guarantee the feasibility of one of these subschedules then we would have a
guarantee for the lifetime of the system. The length of such a subschedule has
a name, it’s called a hyperperiod, and it is equal to the least common multiple
(lcm) of all the periods in the job set. The lcm of two periods is defined as

lcm(a, b) =
a · b

gcd(a, b)

The function gcd used in the definition is the classic greatest common divisor
function which has probably been implemented by every student of program-
ming.

gcd(a, b) =

{

b if a = 0
gcd(b mod a, a) otherwise

To calculate the lcm of lots of periods we only have to know that lcm(a, b, c) =
lcm(a, lcm(b, c)).

If we let L be any time between zero and the hyperperiod, then we can
say that the number of periods of a job Ji that have a deadline before or at L

is equal to
⌊

L−Di

Ti

⌋

+ 1. To understand how this works take a look at figure

1.4 which shows a schedule where a job has two periods. This job has only
one deadline before or at the time L. If we start at time L and move back
D time units, (L − D), then we’ll end up somewhere in the first period and
if we remember that the floor function gives us the number of fully completed
periods (in this example zero) then

⌊

L−D
T

⌋

+1 = 1 which is the result we were
looking for. The point L′ is after the second deadline so L′ −D will be in the

second period, therefore
⌊

L′
−D
T

⌋

+ 1 = 2.

Let’s define the processor demand at any time L to be the total execution
time required by all jobs with deadlines before or at L. If we have a set of n

jobs, we can write this mathematically as:
∑n

i=1

(⌊

L−Di

Ti

⌋

+ 1
)

Ci

Because
⌊

L−Di

Ti

⌋

only changes when L is a multiple of Di we need only be

concerned with checking the processor demand at every deadline. So, we check
every deadline up to the hyperperiod of the job set and if for every deadline
the sum of all of the execution times for every job is less than L then we know
we have a feasible schedule. Let D be the set of all of the absolute deadlines

1.3. The theory behind real-time scheduling 9

clk

t=0 t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=8 t=9

J

T T

D D

L

L′

Figure 1.4: Processor demand.

for every job up to the hyperperiod. Our feasibility test will be

∀L ∈ D, L ≥

n
∑

i=1

(⌊

L−Di

Ti

⌋

+ 1

)

Ci

This test is both necessary and sufficient.

Table 1.2: Earliest Deadline First example job set.

Job T C D

J1 3 1 2
J2 4 2 3
J3 12 2 11

Again, it is easier to understand the theory when we have an example
to look at. Table 1.2 describes the timing specifications of three jobs. The
hyperperiod for these three jobs is 12. The absolute deadlines we’re interested
in for J1 are at times 2, 5, 8, and 11. For J2 we have absolute deadlines at times
3, 7, and 11. For J3 we have only one absolute deadline at time 11. Therefore
D = {2, 3, 5, 7, 8, 11}. Let’s take each member of this set in turn and calculate
the feasibility of this job set with EDF.

First, we take L = 2

2 ≥

3
∑

i=1

(⌊

2−Di

Ti

⌋

+ 1

)

Ci

2 ≥

(⌊

2− 2

3

⌋

+ 1

)

1 +

(⌊

2− 3

4

⌋

+ 1

)

2 +

(⌊

2− 11

12

⌋

+ 1

)

2

2 ≥ 1 + 0 + 0

It holds, i.e. the job set is feasible at time 2.
We then take L = 3

3 ≥

(⌊

3− 2

3

⌋

+ 1

)

1 +

(⌊

3− 3

4

⌋

+ 1

)

2 +

(⌊

3− 11

12

⌋

+ 1

)

2

10 Step 1

3 ≥ 1 + 2 + 0

It holds, i.e. the job set is feasible at time 3.
We move on to L = 5

5 ≥

(⌊

5− 2

3

⌋

+ 1

)

1 +

(⌊

5− 3

4

⌋

+ 1

)

2 +

(⌊

5− 11

12

⌋

+ 1

)

2

5 ≥ 2 + 2 + 0

It holds, i.e. the job set is feasible at time 5.
For our next member of D we have L = 7

7 ≥

(⌊

7− 2

3

⌋

+ 1

)

1 +

(⌊

7− 3

4

⌋

+ 1

)

2 +

(⌊

7− 11

12

⌋

+ 1

)

2

7 ≥ 2 + 4 + 0

It holds, i.e. the job set is feasible at time 7.
We now take L = 8

8 ≥

(⌊

8− 2

3

⌋

+ 1

)

1 +

(⌊

8− 3

4

⌋

+ 1

)

2 +

(⌊

8− 11

12

⌋

+ 1

)

2

8 ≥ 3 + 4 + 0

It holds, i.e. the job set is feasible at time 8.
And finally, we take L = 11

11 ≥

(⌊

11− 2

3

⌋

+ 1

)

1 +

(⌊

11− 3

4

⌋

+ 1

)

2 +

(⌊

11− 11

12

⌋

+ 1

)

2

11 ≥ 4 + 6 + 2

It does not hold, i.e. the job set is not feasible. The deadline at time 11 for J3
will be missed. Figure 1.5 shows the schedule of the above job set. We can see
that J3 hasn’t finished execution at time 11. The extra unit of execution at
time 11 is beyond that job’s deadline. The job J2 also has a deadline at time
11. This means J2 and J3 have the same priority at this point and according
to EDF it could easily have been J2 which misses its deadline instead of J3. In
any case this real-time system has failed.

clk

t=0 t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=8 t=9 t=10 t=11

J1

J2

J3

Figure 1.5: EDF schedule.

1.4. Hidden costs 11

If all jobs have their relative deadlines equal to their period then there is a
simpler feasibility test [CL73]. We can calculate what fraction of a job’s period
is taken up by its execution time, add up all the results for every job, then test
to see the result this is less than 100%. This can be written mathematically as
follows:

n
∑

i=1

Ci

Ti

≤ 1

If this condition holds then we know that EDF will generate a feasible schedule
for our job set. If we take the example job set given in table 1.2 and increased
each job’s deadline to be equal to its relative deadline then we would have a
processor utilisation factor of:

C1

T1

+
C2

T2

+
C3

T3

=
1

3
+

2

4
+

2

12
=

4

12
+

6

12
+

2

12
= 1

This job set would in that case be feasible with EDF.

1.4 Hidden costs

The treatment given to scheduling so far has been quite theoretical. The algo-
rithms we’ve seen are time driven; they need a hardware clock which generates
interrupts at a constant frequency each of which could be the start of a job’s
period and a possible preemption. We haven’t mentioned how to account for
the time it takes the kernel to schedule jobs, nor have we mentioned how to
account for interference from hardware interrupts. Apart from interrupts and
scheduling costs, there are other hidden costs which can make the worst case
execution time calculations a bit tricky.

Accounting for interrupts

Hardware interrupts can be problematic to deal with since the service rou-
tines effectively have higher priorities than any system job. That is to say
the currently executing job has no option but to suspend execution whilst the
interrupt service routine executes. Our scheduling tests do not take these ser-
vice routines into consideration and this makes their results too optimistic and
therefore unusable. Our only option is to try to “work in” the interrupt costs
into our feasibility tests.

When we account for the interrupt service routine costs, we can model them
like we did with jobs; each routine will have a worst case execution time (C)
and a worst case interarrival time 1 (T). We won’t give the routines a relative
deadline as we’re not trying to test their feasibility as they are scheduled by
interrupt controllers not our algorithms.

If we have m interrupts then we can calculate that under a given duration

of time, L, then the interference from all interrupts would be
∑m

j=1

⌈

L
Tj

⌉

Cj .

The amount of processor time which is needed to handle interrupts under a
duration of time L is given by the following function:

1The minimum time between interrupts.

12 Step 1

f(0) = 0

f(L) =

{

f(L− 1) + 1 if
∑m

j=1

⌈

L
Tj

⌉

Cj > f(L− 1)

f(L− 1) otherwise

Table 1.3: Interrupt example.

Interrupt T C

Int1 3 1
Int2 6 2

Table 1.4: Interrupt handling cost and interference.

L f(L)
∑

2

j=1

⌈

L
Tj

⌉

Cj

0 0 0
1 1 3
2 2 3
3 3 3
4 4 4
5 4 4
6 4 4

We can quickly show the difference between interrupt handling costs and
interrupt interference with an example. Table 1.3 shows two interrupts, their
worst case interrival time, and their worst case execution time. Table 1.4
shows the cost of handling these interrupts during the time from 0 to 6, and
the interference experienced by jobs which have a lower priority during the
same time. To “work in” interrupt handling we merely expand our feasibility
tests to include either handling costs or interference.

In the case of EDF scheduling we would have a new feasibility test of:

∀L ∈ D, L− f(L) ≥

n
∑

i=1

(⌊

L−Di

Ti

⌋

+ 1

)

Ci

What we’re saying here is that the processor time available at time L, minus
all of the time required for interrupt handling, must be grater than or equal to
the time required for job execution [KJ93].

For DM scheduling we would have to change the response time calcula-
tion in the feasibility test to include the interference experienced by interrupt
processing. The new response time equation will then be:

Ri = Ci +

i−1
∑

k=1

⌈

Ri

Tk

⌉

Ck +

m
∑

j=1

⌈

Ri

Tj

⌉

Cj

As far as the hardware clock is concerned, its interrupts are generated at a
constant frequency so the value of T is quite easy to figure out. The execution

1.4. Hidden costs 13

time associated with the clock interrupt would be all the work that is common
to every clock tick, e.g., updating the global system time, checking all inactive
jobs to see if their period has started, and possibly checking every job in the
current and pending states for a missed deadline. We don’t associate the work
required for scheduling and preemption since these costs are not incurred with
every clock interrupt. We’ll look at those costs a little later.

Other hardware interrupts may be more problematic especially if there is
a lot of work to be done with each interrupt. Imagine we were writing code
to control a network controller chip which generated interrupts, and that each
interrupt involved the transport of data between memory and the network con-
troller. This might be too much work for a code routine with a priority higher
than any job. To avoid the problem of too much interrupt service execution
time we could attempt to split the work performed at every interrupt into a
small interrupt service routine which recognises the network interrupt, and a
job which performs the actual processing and controlling of the hardware. In
essence, instead of being a time triggered (periodic) job, we define the network
job to be event triggered (sporadic). Like any other periodic job this sporadic
network job would have a code function and deadline. The network controller
interrupt when activated would place its sporadic job into the pending state
and the scheduling algorithm would deal with it just like a periodic job. The
only thing left to do is find the minimum amount of time 2 between network
controller interrupts. This would be the network job’s period. We would then
have all the information we need to perform the feasibility test.

If we think about it, the only difference between periodic and sporadic
jobs is the event that moves the job into the pending state — hardware clock
interrupt vs. network controller interrupt. In many cases we may be tempted
to just poll the network controller with a periodic job which had a suitable
period. In general, periodic polling can be seen as a low-pass filter protecting
against erroneous input overflow from the environment. This is a technique
used exclusively in some hard real-time systems [SZ89].

Accounting for scheduling

Now we’ve dealt with interrupts we can look at the costs connected with
scheduling. During its period, a job may be preempted many times but it
preempts only once. For every job period we have these scheduling costs:

Period arrival The job’s period arrives and it is moved from the inactive
state into the pending state.

Preemption prologue The job eventually moves into the current state pos-
sibly preempting a lower priority job. Execution is then started.

Preemption epilogue Execution finishes and the job is moved into the in-
active state. The job which was initially preempted is moved back into
the current state.

If we extend every job’s worst case execution time with these costs then we can
integrate the cost of scheduling into our feasibility tests without altering the
equations.

2The worst case interarrival time.

14 Step 1

Other costs

When the bus between the processor and memory is shared with hardware
devices which use Direct Memory Access (DMA) the worst case execution time
C may be difficult to determine. A DMA controller often works on the basis
of cycle stealing. When the controller needs to access the bus it shares with
the processor, it signals the processor asking to use the bus then waits for
permission. When permission is given the DMA controller becomes the bus
master and locks out the processor for a certain length of time. The problem
with this setup is that the bus which the processor is being denied is needed to
fetch instructions and data which may not be in the processor’s cache memory.
This will extend the time it takes to execute code sequences. The costs of DMA
must either be eliminated, by choosing not to use DMA, or accounted for as
we did with interrupts. There is the option of not implementing cycle stealing
DMA and choosing instead to split bus access between the processor and other
hardware with a Time Division Multiple Access (TDMA) policy. With TDMA
each device which can access the bus is given its fair share of bus cycles. For
example, with a system design with one processor and one DMA controller,
the bus may be altered between processor and controller every bus cycle. Each
device would get 50% of the bus time. This makes the worst case execution of
job code long but predictable.

Another source of problems which has to be dealt with is the use of Mem-
ory Management Units (MMU) in modern processors. The MMU implements
a mapping between virtual and physical addresses that allows an operating
system to change the way software sees memory and hardware with respect to
their addresses. This mapping is implemented with a set of hierarchical tables
which describe the regions of virtual memory and their physical counterparts.
These tables are held in physical memory just like application code and data.
The MMU has a built in cache called the Translation Lookaside Buffer (TLB)
which remembers a subset of the mappings held in memory in order to speed
up the translation process. The use of a cache speeds up the translation in
most cases but when a translation is needed and the TLB doesn’t contain the
necessary information then the MMU has to walk through the hierarchy of
tables contained in memory which can be costly. Since the MMU is consulted
every time instructions or data are fetched from memory the worst case cost
has to be considered and modelled. Simply timing your code execution may
not give you the worst case execution time since the TLB cache may be non-
deterministic — several different executions may give several different timings.
One solution is to completely disable the MMU, effectively implementing a one
to one mapping, which is easy if you are not using a third party operating
system and the hardware allows it. If you cannot do this then you might be
able get good worst case execution timings if you can lock down TLB entries
with virtual to physical mappings your code will never use. This would give as
many TLB misses as possible. Since processor caches behave in a similar way
to the TLB, designers may want to turn them off when trying to calculate a
job’s worst case execution time.

1.5. Which algorithm should I use? 15

1.5 Which algorithm should I use?

We’ve seen two scheduling algorithms specifically designed for hard real-time
systems: DM which is a static priority algorithm, and EDF which is a dynamic
priority algorithm. Scheduling theory says that dynamic priority algorithms
can schedule any job set that static priority algorithms can. However, the
reverse is not so [But97]. Knowing this, you’re probably wondering why we
looked at both of them. Surely just using EDF would make things simpler?
Yes it would, however, as we saw earlier there are real-time kernels on the
market that have first come first served scheduling algorithms. These kernels
may be usable in a hard real-time system if the kernel suppliers can provide a
worst case execution time for clock interrupt processing, preemption, and any
other system calls your application may use. Another advantage to DM is that
if the system experiences an overload at a certain priority level then all higher
priority jobs will still be scheduled whereas EDF might not preempt the job
that is causing the overload.

1.6 The implementation

The implementation of a system using the everyman kernel is split into three
parts. We have the kernel which is written completely in C and is portable
across 32-bit platforms. There is the BSP which is platform specific and may
have parts written in assembly language. Then we have the application which
contains the jobs which the kernel schedules.

To help the system designer build a system based upon the everyman

kernel we’ll build a tool which translates a description of the system into a
properly configured kernel C code file. This tool is the SDL compiler.

BSP

The BSP will be responsible for configuring and later controlling the hardware
used. When the kernel is to be ported to a new platform it will most likely be
necessary to rewrite the hardware specific parts.

All five BSP functions start with the prefix BSP :

BSP enable interrupts When the kernel calls this function the BSP will en-
able interrupts.

BSP deadline overrun If this function is called then a job has missed its dead-
line. This function could be used to try to recover from an overload or
even gracefully shutdown the system. The kernel checks the deadlines
every clock tick and calls the function if the system time is equal to the
absolute deadline of the current job or any pending job.

BSP disable interrupts When the kernel calls this function the BSP will
disable interrupts. This function is called when we update the kernel’s
internal data structures. When the update is finished the kernel will call
the BSP function which enables interrupts.

BSP init exception vectors This function will be called by the kernel when
the system starts up. This function should maybe be called

16 Step 1

BSP init interrupts but some processor architectures handle hardware
interrupts and processor exceptions with the same mechanism. It is often
quite useful to be able to handle these exceptions. One example could
a divide by zero exception, another could be software breakpoints. It
would be up to the BSP to handle such exceptions.

BSP init clock This function is called by the kernel to instruct the BSP to
initialise the real-time clock hardware. It is assumed that this clock
generates interrupts and the interrupts will not be generated until the
BSP enable interrupts function is called, that is to say, the
BSP init exception vectors function will not have interrupts enabled
before the first call to BSP enable interrupts.

The above functions are merely an interface. The designer is obviously free
to implement these functions in any way he/she chooses.

Kernel

The kernel also has an API, the functions of which are used to create the system
and then respond to the various events generated by either the hardware or
the application.

When the hardware starts and has finished its initialisation we expect some
piece of BSP code to start executing. This code should call the kernel’s initial-
isation API function so that the hardware is configured in the order that the
kernel requires.

Whenever we get a clock interrupt, we need to advance the system time
and check for any scheduling activities that need to be performed. The API
includes a function for the BSP to call in this case.

In this step we need only one more API function which will create any jobs
for the scheduler to process.

So, in total we have three API functions all of which start with KERN .

KERN clock tick The BSP will call this function every time the real-time clock
hardware generates an interrupt. This function will kick the scheduler
into action.

KERN init The BSP calls this function after it has loaded the system into
memory. This function will create all of the defined jobs and then ask
the BSP to initialise exception vectors and the real-time clock hardware.
Interrupts will then be enabled and the the job with the highest priority
will start running. This function is generated by the SDL compiler.

KERN job create This function is used to configure the system to schedule a
job. It is called by KERN init. The system designer usually does not
write code to call this function. It is provided as an API function should
you wish to create and use your own system definition mechanism instead
of the SDL compiler.

Application

The specifications on the application are not that stringent. Every job has an
entrypoint which is a function which is called every time the job moves into the

1.6. The implementation 17

current state. The designer obviously has to implement a function that will do
the work this job has to perform then return within the job’s deadline.

There is an optional set of functions in the everyman kernel called hooks.
These functions are called by the kernel at important times during a job ac-
tivation. The reasoning behind these functions is that it was thought to be
important to allow the system designer to log scheduling activity in real-time.
The designer may wish to use the functions to track system activity in worst
case load conditions. The hook functions are as follows:

HOOK job arrive Called every time a job arrives.

HOOK job finish Called every time a job finishes execution.

HOOK job start Called every time a job actually starts execution, more pre-
cisely, this function is called just before a job starts executing its first
instruction.

SDL

The everyman kernel has a System Description Language (SDL) that the de-
signer uses to generate a kernel code file. In this step of the kernel development
the SDL compiler may seem like overkill. However, in later steps we see how
we can use compile time information to automatically configure the kernel in
a way that would be error prone if it were to be done manually.

The SDL compiler is very simple. It takes an input file where the designer
specifies three things:

• The scheduling algorithm to be used: EDF or DM.

• Whether hooks are to be used or not.

• The jobs to be scheduled by the system. Each job has a period, a deadline,
and an entrypoint function.

With this information the compiler will take a skeleton kernel source code
file and add code lines in the beginning of the file which configures the kernel
according to the scheduling algorithm used and then at the end of the file the
compiler will generate all the calls to the function KERN job create, one call
for each job defined.

The Code

Throughout the code we make use of certain types which are basically synonyms
for the basic C types. As you can see in listing 1.1 these are used to describe
unsigned 8, 16, or, 32-bit quantities.

Listing 1.1: Misc. types

typedef unsigned char U8;

typedef unsigned short U16;

typedef unsigned int U32;

18 Step 1

Everything we need to know about jobs is described by the types described
in listing 1.2. A job is either periodic or sporadic. The fields period and
relative deadline are the timing parameters T and D. From these two
static values we calculate arrival time and absolute deadline. The field
function is a pointer to a code routine which performs the job’s work. The
fields next job and prev job are used to keep the KERN job t on a linked list.

Listing 1.2: Job types

typedef enum {

PERIODIC_JOB ,

SPORADIC_JOB

} KERN_job_type_t;

typedef struct KERN_job KERN_job_t;

struct KERN_job

{

KERN_job_type_t type;

U32 relative_deadline;

U32 absolute_deadline;

U32 period;

U32 arrival_time;

KERN_job_t *next_job;

KERN_job_t *prev_job;

void (* function)(void);

};

Now we’ve defined our types we can start to map out the global data that
the kernel will need which is given in listing 1.3. The constant MAX NUMBER JOBS

is created by the SDL tool. It is merely the number of jobs which exist in
the system. The global variable job index starts at 0 and tells us where
the next free space in the array the jobs can be found. See the function
KERN job create.

You can choose not to use the SDL tool and instead define the constant
MAX NUMBER JOBS yourself. Just make sure the array the jobs is big enough
for your needs.

Another constant is MAX STACK DEPTH and again this is defined by the SDL
tool. This along with the array stack and the variable stack index is used to
remember what the last job which was current when a preemption occurred.
In this step MAX STACK DEPTH is the same as MAX NUMBER JOBS. In later steps
these constants will be different from each other. See the functions given in
listing 1.6 and listing 1.7 for the internal stack API.

The following three variables are used by the scheduler to keep track of the
state of all the jobs:

current job The job (periodic or sporadic) that is currently executing.

pending jobs list A linked list of all the periodic jobs that want to execute.

inactive jobs list A linked list of all the periodic jobs that await their next
period.

The system time starts at zero and is incremented with every clock tick
(see listing 1.15). The content of this variable determines the behaviour of the

1.6. The implementation 19

system. If it is updated irregularly then the computer’s idea of time won’t
match real time. If the variable which is an unsigned 32-bit number wraps
around to zero again then you will have problems.

The remainder of listing 1.3 forward defines three functions to avoid com-
piler warnings.

Listing 1.3: Intro

static KERN_job_t the_jobs[MAX_NUMBER_JOBS];

static U32 job_index;

static void *stack[MAX_STACK_DEPTH];

static U32 stack_index;

static KERN_job_t *current_job;

static KERN_job_t *pending_jobs_list;

static KERN_job_t *inactive_jobs_list;

static U32 system_time;

static void job_preempt (void);

static void job_add_to_inactive_jobs_list (KERN_job_t *job);

static void job_arrive (KERN_job_t *job);

Listing 1.4 shows the function we call when we want to update the kernel’s
internal data structures. When we disable interrupts we make preemption
impossible.

Listing 1.4: system lock

static void system_lock (void)

{

BSP_disable_interrupts ();

}

When we’ve finished updating the kernel’s internal data structures we call
system unlock.

Listing 1.5: system unlock

static void system_unlock (void)

{

BSP_enable_interrupts ();

}

The stack which was mentioned earlier is used to save system state we need
to “remember” when we preempt jobs. Listings 1.6 and 1.7 are called to save
and restore kernel state. In the next step we save more state information than
we do in this step.

Listing 1.6: stack push

static void stack_push (void *data)

{

stack[stack_index ++] = data;

}

Listing 1.7: stack pop

static void *stack_pop (void)

20 Step 1

{

return stack[--stack_index];

}

Listing 1.8 shows the function which allocates and initialises a KERN job t.
Usually this function is used in code generated by the SDL tool. SDL gener-
ated calls to KERN job create are made before the system starts running. This
means interrupts are disabled and system lock isn’t needed to preserve the
integrity of the array the jobs and the variable used to index it: job index.
If you wanted to create jobs manually, possibly dynamically after the sys-
tem starts, then you would have to surround calls to KERN job create with
system lock and system unlock.

Listing 1.8: KERN job create

KERN_job_t *KERN_job_create (U32 period , U32

relative_deadline , void (* function)(void),

KERN_job_type_t type)

{

KERN_job_t *job;

if(job_index > MAX_NUMBER_JOBS - 1)

{

return NULL;

}

job = &the_jobs[job_index ++];

job ->type = type;

job ->period = period;

job ->relative_deadline = relative_deadline;

job ->function = function;

if(job ->type == PERIODIC_JOB)

{

job ->absolute_deadline = system_time + job ->

relative_deadline;

job_arrive(job);

}

return job;

}

Whenever a job’s period starts then it is moved into the pending state.
The function job add to pending jobs list shown in listing 1.9 does just
that. The pending jobs list is sorted in order of priority, the head of the list
having highest priority.

Listing 1.9: job add to pending jobs list

static void job_add_to_pending_jobs_list (KERN_job_t *job)

{

KERN_job_t *runner;

KERN_job_t *last_runner;

for(last_runner=NULL , runner = pending_jobs_list; runner

; last_runner=runner , runner = runner ->next_job)

{

1.6. The implementation 21

#if defined OPT_EDF_SCHEDULING

if(runner ->absolute_deadline > job ->

absolute_deadline)

#elif defined OPT_DM_SCHEDULING

if(runner ->relative_deadline > job ->

relative_deadline)

#else

#error "no scheduler defined"

#endif

{

break;

}

}

if(runner)

{

job ->prev_job = runner ->prev_job;

if(runner ->prev_job)

{

runner ->prev_job ->next_job = job;

}

else

{

pending_jobs_list = job;

}

job ->next_job = runner;

runner ->prev_job = job;

}

else

{

if(last_runner)

{

last_runner ->next_job = job;

job ->prev_job = last_runner;

job ->next_job = NULL;

}

else

{

job ->prev_job = job ->next_job = NULL;

pending_jobs_list = job;

}

}

}

The internal function job arrive in listing 1.10 is used to get a job onto
the pending list. We need to do this when either a periodic job is created
(listing 1.8), or a periodic job’s period has started (listing 1.15), or a sporadic
job has been released (listing 1.16). Since sporadic jobs can’t have their abso-
lute deadlines calculated statically, it is updated here. See listing 1.12 for the
periodic job’s absolute deadline calculation.

Listing 1.10: job arrive

static void job_arrive (KERN_job_t *job)

22 Step 1

{

if(job ->type == SPORADIC_JOB)

{

job ->absolute_deadline = system_time + job ->

relative_deadline;

}

job_add_to_pending_jobs_list(job);

#ifdef OPT_USE_HOOKS

HOOK_job_arrive(job);

#endif

}

The function job add to inactive jobs list is shown in listing 1.11. This
function is called when a job has finished execution and we want it to wait until
the start of its next period. This function should not be used with sporadic
jobs. See the function job finish (listing 1.12) for the only caller of this
function.

Listing 1.11: job add to inactive jobs list

static void job_add_to_inactive_jobs_list (KERN_job_t *job)

{

KERN_job_t *runner;

KERN_job_t *last_runner;

for(last_runner=NULL , runner = inactive_jobs_list;

runner; last_runner = runner , runner = runner ->

next_job)

{

if(runner ->arrival_time > job ->arrival_time)

{

break;

}

}

if(runner)

{

job ->prev_job = runner ->prev_job;

if(runner ->prev_job)

{

runner ->prev_job ->next_job = job;

}

else

{

inactive_jobs_list = job;

}

job ->next_job = runner;

runner ->prev_job = job;

}

else

{

if(last_runner)

{

1.6. The implementation 23

last_runner ->next_job = job;

job ->prev_job = last_runner;

job ->next_job = NULL;

}

else

{

job ->prev_job = job ->next_job = NULL;

inactive_jobs_list = job;

}

}

}

Listing 1.12 shows job finish which is called when a job finishes execution.
here we set up the job’s timing parameters for the next period.

Listing 1.12: job finish

static void job_finish (KERN_job_t *job)

{

if(job ->type == PERIODIC_JOB)

{

job ->arrival_time = (job ->arrival_time + job ->period);

job ->absolute_deadline = job ->arrival_time + job ->

relative_deadline;

job_add_to_inactive_jobs_list (job);

}

#ifdef OPT_USE_HOOKS

HOOK_job_finish(job);

#endif

current_job = stack_pop ();

}

Listing 1.13 shows the library function job list unlink which removes the
job at the head of the job list. This is currently only used on the pending
jobs list.

Listing 1.13: job list unlink

static KERN_job_t *job_list_unlink (KERN_job_t ** job_list)

{

KERN_job_t *retval;

if(* job_list)

{

retval = *job_list;

if(retval ->next_job)

{

retval ->next_job ->prev_job = NULL;

}

*job_list = retval ->next_job;

}

else

{

retval = NULL;

}

24 Step 1

return retval;

}

Listing 1.14 shows the internal function job preempt. This function is
called to check for any possible preemption. The purpose is basically to find
the job with the highest priority which is either currently executing or pending.
If this job isn’t the currently executing job then we make sure that it becomes
the currently executing job.

Listing 1.14: job preempt

static void job_preempt (void)

{

system_lock ();

for (;;)

{

if(pending_jobs_list)

{

if(! current_job ||

#if defined OPT_EDF_SCHEDULING

(current_job ->absolute_deadline >

pending_jobs_list ->absolute_deadline))

#elif defined OPT_DM_SCHEDULING

(current_job ->relative_deadline >

pending_jobs_list ->relative_deadline))

#else

#error "no scheduler defined"

#endif

{

/* We need to preempt the currently executing

job */

/* Remember the current job so we can return

to executing it later */

stack_push(current_job);

/* Get the new current job */

current_job = job_list_unlink (&

pending_jobs_list);

#ifdef OPT_USE_HOOKS

HOOK_job_start(current_job);

#endif

system_unlock ();

/* Start executing the new current job */

current_job ->function ();

system_lock ();

job_finish(current_job);

}

else

{

/* No preemption - the current job has the

highest priority.*/

1.6. The implementation 25

break;

}

}

else

{

/* No preemption - there are no pending jobs */

break;

}

} /* for (;;) */

system_unlock ();

}

The core of system scheduling is implemented in the function KERN clock tick

shown in listing 1.15. This function is called at every system clock tick. The
system lock function prevents this function from executing and as a conse-
quence protects all of the kernel’s internal data structures from corruption.

Listing 1.15: KERN clock tick

void KERN_clock_tick (void)

{

KERN_job_t *j, *temp;

system_lock ();

system_time ++;

/* Has the current job missed its deadline */

if(current_job && system_time == current_job ->

absolute_deadline)

{

BSP_deadline_overrun(current_job);

}

/* Have any pending jobs missed their deadlines */

for(j = pending_jobs_list; j; j=j->next_job)

{

if(system_time == j->absolute_deadline)

{

BSP_deadline_overrun(j);

}

}

/* See if any jobs have started their periods */

for(j = inactive_jobs_list; j;)

{

if(system_time == j->arrival_time)

{

temp = j;

j=j->next_job;

if(temp == inactive_jobs_list)

{

inactive_jobs_list = j;

if(j)

{

j->prev_job = NULL;

26 Step 1

}

}

else /* shouldn ’t need this "else" */

{

temp ->prev_job ->next_job = j;

if(j)

{

j->prev_job = temp ->prev_job;

}

}

/* Move the job into the pending jobs list */

job_arrive(temp);

}

else

{

j=j->next_job;

}

}

system_unlock ();

/* We may have a possible preemption */

job_preempt ();

}

KERN job arrive (listing 1.16) is called in order to get a sporadic job into
the pending jobs list. Don’t call this function on periodic jobs or when the
interrupts are disabled. If you really need to move a job into the pending state
and interrupts are disabled, then use the internal function job arrive (listing
1.10) instead and when you enable interrupts again call job preempt.

Listing 1.16: KERN job arrive

void KERN_job_arrive (KERN_job_t *job)

{

system_lock ();

job_arrive(job);

system_unlock ();

job_preempt ();

}

This completes the design of the kernel for Step 1.

STEP 2

Here we build upon the previous step and introduce a resource ac-
cess protocol which will eliminate unbounded blocking and priority
inversion.

The previous step gave us the ability to have several jobs on the go at the
same time. In order to perform useful work, a job will need access to things
like hardware registers or data structures in memory which are often needed
by other jobs. We model these registers and data structures as resources and
control the access to the resources with a protocol

We can denote a resource with the symbol R. Each resource will have
a maximum of NR units available and we can denote the current amount of
units available for a resource with νR. It should come as no surprise that
0 ≤ νR ≤ NR.

2.1 Blocking

When a job wants a certain number of units of a certain resource then it
performs a request. We write µR(J) to denote the number of units of resource
R that the job J will request.

If µR(J) > νR then the resource R does not have enough units to satisfy
the request so J would have to wait for the required number of units of the
resource to become available, i.e. wait until µR(J) ≤ νR. When a job has to
wait it is said to block.

When there are enough units available then these units are allocated to the
job. After the job has finished performing the work it needs to do with the
resource, it releases a certain number of units of the allocated resource. The
most common case would be that the job releases exactly the same amount of
units as it requested.

A mutex is an example of a single unit resource (NR = 1). A reader/writer
lock is an example of a multiple-unit resource. In this example, the value of
NR would have to be greater than or equal to the number of resource users.
A reader would request one unit and a writer would request all of the units.
This means that if any job was reading then all writers would be blocked since
νR < NR, and if there was one writer then all other readers and writers would
block since νR = 0.

Let’s take a single unit resource R and two jobs, J1 and J2, which need
to use this resource. If both jobs need to use this resource at the same time
then one of them will have to be blocked. Figure 2.1 shows the case where
J2 is allocated the resource and J1 blocks waiting for J2 to finish. This could
happen if J2 was the current job and just after it was allocated the resource,
it was preempted by J1. If we schedule the jobs according to RM or EDF, and
we do not allow resources to be held across periods, then we know that J1 will
have an upper bound on the amount of time it will be blocked. In the worst
case this bound will be the time from J1’s request up to the absolute deadline
of J2. Not surprisingly we say that this is a bounded blocking.

To give an example of unbounded blocking, we expand our example and
introduce a new resource R2 which both J1 and J2 want to use. Imagine the
jobs were scheduled as follows:

27

28 Step 2

RJ1 J2

Figure 2.1: Resource blocking.

Step 1 J1 becomes the current job and its code starts to execute. It requests
R1 and has the resource allocated to it.

Step 2 J2 now becomes pending, preempts J1, requests and is allocated R2.

Step 3 J2 requests R1 which is not available and it blocks. The job is moved
from the current state to allow another job to make progress.

Step 4 J1 becomes the current job again and it requests R2 which is not
available and it blocks.

In this example J1 must block because it needs the resource J2 has. J2 also
must block because it needs the resource J1 has. Both of these jobs are said
to be deadlocked.

R1

R2

J1

J2

Figure 2.2: Resource deadlock.

One proposed solution to deadlock could be to let deadlocked jobs release
their resources and start all over again. In this case J1 would release R1,
J2 would release R2, and the jobs would somehow be moved back into the
execution state before they tried to request resources. The idea behind this
proposal is that the jobs probably wouldn’t be deadlocked the next time they
requested their resources thus solving the problem. The thing is that system
designers have seen problems with such a solution. It is not unheard of for
systems to become caught up in a deadlock-release loop — once the resources
were released the scheduler executed the jobs in such a way that the jobs became
deadlocked again. This is known as a livelock. Both livelock and deadlock are
extreme examples of unbounded blocking.

Here is another example of a blocking problem that is quite common. Sup-
pose we have three jobs: J1, J2, and J3. J1 has a high priority, J3 has a low
priority, and J2 has a priority somewhere between J1 and J3. J1 and J3 both
need access to the same resource. Imagine J3 is the current job and it requests
and is allocated the resource it needs. Before it is finished with the resource
J1 preempts it and requests the same resource which leads to a blocking. The
question is how long will J1 have to wait until it is unblocked? The answer
depends on the execution times of both J3 and J2 since J2 can preempt J3 and

2.2. Stack Resource Policy 29

prevent it from finishing its work with the resource J1 is blocked waiting for.
This situation is known as priority inversion since the scheduler is letting J2
make progress at the expense of J1 which has a higher priority. If the proces-
sor was allocated to J3 instead, then it would mean J1 would be blocked for
the minimum amount of time which is obviously desirable. A solution to this
would be to prevent the preemption of J3 by any job with a priority less than
or equal to J1 whilst J1 was blocked. This would effectively let J3 inherit J1’s
priority whilst J3 was blocked.

2.2 Stack Resource Policy

A mechanism for resource allocation which eliminates deadlock, livelock, and
priority inversion was invented in 1990. It is called the stack Resource Policy
(SRP) [Bak91]. Essentially, this policy will not allow jobs to enter the current
state if all of the resources they need are not available. This means once
a job starts it will have no reason to block which eliminates deadlock and
livelock. The policy also makes sure that a job which holds a resource will
effectively inherit the priority of any higher priority job which it is preventing
from entering the current state. This eliminates priority inversion.

We limit resource request and release to be performed in Last In First Out
(LIFO) order. This means that if a job requests R1 then R2, it must release
the resources in the order R2 then R1. We will also say that jobs cannot
hold resources across job periods — jobs must request and release all resources
within a period.

Job preemption level

With SRP, every job is given a preemption level. For a job J the preemption
level is denoted π(J). The fundamental rule is that a job may only preempt
another job if it has both a higher priority and a higher preemption level.
We set a job’s preemption level to be inversely proportional to the relative
deadline. With DM the preemption level is exactly the same as the priority
so this fundamental rule obviously holds. With EDF the rule still holds but it
is not as obvious to see why. Looking at figure 2.3 we see on the top timing
diagramme that J2 may have a higher preemption level but during J2’s period
it does not have a higher priority, so there is no preemption. On the bottom
timing diagramme J2 will preempt J1 because it has both a higher priority and
a higher preemption level. The SRP rule regarding preemption levels holds
with EDF because a preempting job always starts after the job it preempts
and it must have a shorter relative deadline to have a higher priority (shorter
absolute deadline). The job preemption level is a mechanism used by the SRP
to turn the EDF dynamic priorities into a static value.

Resource ceiling

Each resource has a preemption ceiling denoted by RνR
. The subscript νR is the

number of available units of resource R. We need this subscript because, and
you will later see why, the ceiling can change when νR changes. The definition
of a resource’s preemption ceiling is:

RνR
= max({0} ∪ {π(J)|νR < µR(J)})

30 Step 2

clk

t=0 t=1 t=2 t=3 t=4 t=5 t=6

T1

D1

T2

D2

clk

t=0 t=1 t=2 t=3 t=4 t=5 t=6

T1

D1

T2

D2

Figure 2.3: EDF preemption levels.

Earlier we defined µR(J) as the amount of resource R that job J will request,
and if νR < µR(J) then the job would need to block. So, the resource ceiling
RνR

is equal to the highest preemption level of all jobs that will block when
resource R has only νR units available. If no job would block then RνR

is zero.

We next define a system ceiling π which is defined to be the maximum of
all the current ceilings of all the resources. We set π to be initially zero.
We make sure that no job J is allowed to move into the current state unless
π(J) > π.

Every time that a resource R is requested the value of νR is updated to
reflect that fact that some units are no longer available. π is pushed onto a
stack and it is then compared to RνR

. If it so happens that RνR
> π then π is

set to the value of RνR
. Otherwise, π remains unchanged.

When a resource is released then νR is updated to reflect that more units
are now available and π is set to a value that is popped from the stack. Ef-
fectively, this restores the value of π to that which it had before the resource
was allocated. This stack correctly tracks the value of π because we limited
resource requests and releases to be performed in LIFO order.

As an example of how job preemption levels give resource ceiling tables
we will look at an example of a reader/writer lock. We will have three jobs,
J1 and J2 are readers, and J3 is a writer. The table 2.1 shows the jobs and
their preemption levels and how many units of the resource they request. The
resource ceiling table is shown in table 2.2. Since we have three jobs we set
NR = 3.

2.3. Feasibility Tests 31

When all units are available any job can be moved into the current state.
Should the writer job, J3 make its request then π would become R0 = 3 which
prevents the other jobs from moving into the current state. If, on the other
hand, one of the reader jobs made a request then π would become R2 = 1. In
this case, the writer job, J3 cannot move into the current state as π ≥ π(J3). On
the other hand it is still possible for the other reader to move into the current
state as both π(J1) and π(J2) are greater than π. This is shown visually in
figure 2.4 where on the left we have the writer preventing the readers, and, on
the right we see the readers preventing the writer.

If the writer did not have the lowest preemption level like in this example
then the reader/writer lock wouldn’t work as we want it to. The first reader
which made a request would raise π to a level higher than any reader which
had a preemption level lower than a writer.

Table 2.1: SRP example job set.

J π(J) µR(J)

J1 3 1
J2 2 1
J3 1 3

Table 2.2: Resource ceiling table.

νR RνR

0 3
1 1
2 1
3 0

R1J1
1

J2
1

J3

3

R1J1
1

J2
1

J3

3

Figure 2.4: SRP example.

2.3 Feasibility Tests

The maximum blocking time experienced by a job is the time that a lower
priority job may hold a resource. A job can only be blocked by only one lower
priority job. To calculate the blocking time, Bi, for job Ji we will obviously
have to time every code sequence between a resource request and release for
all jobs which have a preemption level lower than π(Ji)

32 Step 2

As in Step 1, we assume we have a set of n jobs, {J1, ..., Jn}, where J1 has
the highest priority and Jn the lowest.

The feasibility test for Deadline Monotonic is updated to include the block-
ing time in the response time analysis.

Ri = Ci +Bi +
i−1
∑

k=1

⌈

Ri

Tk

⌉

Ck +
m
∑

j=1

⌈

Ri

Tj

⌉

Cj

With Earliest Deadline First the change is not so simple. The test including
blocking is:

∀L ∈ D, 1 ≤ i ≤ n,L− f(L) ≥
i

∑

k=1

(⌊

L−Dk

Tk

⌋

+ 1

)

Ck +

(⌊

L−Di

Ti

⌋

+ 1

)

Bi

Instead of calculating the processor demand for all jobs at every absolute
deadline, we need to take each job in turn and calculate the processor demand
for that job and all jobs with higher preemption levels, plus, the blocking time
from jobs with lower preemption levels.

• For each job

∀L ∈ D, 1 ≤ i ≤ n, L− f(L) ≥
∑i

k=1

(⌊

L−Dk

Tk

⌋

+ 1
)

Ck +
(⌊

L−Di

Ti

⌋

+ 1
)

Bi

• Processor demand for Ji and all jobs with higher preemption level

• Total blocking time from lower preemption level jobs

The reason we have to analyse each job in turn is that blocking time isn’t
lost time. Let’s say we have a job set and there is a job Ji can be blocked by
Jj for Bi units of time. If we try to perform a processor demand analysis for
all jobs like we did in the last step and somehow work in the blocking times
for each job, then we would end up including the blocking times twice. In our
example we would be using both Bi and the whole of Cj which also includes
Bi. This is obviously too pessimistic.

2.4 Implementation

As we know, each job will now have a preemption level associated with it
(π(J)). The kernel’s job data type, which is shown in listing 2.1, is changed to
include a field called preemption level.

Listing 2.1: KERN job t

typedef struct KERN_job KERN_job_t;

struct KERN_job

{

KERN_job_type_t type;

U32 preemption_level ;

2.4. Implementation 33

U32 relative_deadline;

U32 absolute_deadline;

U32 period;

U32 arrival_time;

KERN_job_t *next_job;

KERN_job_t *prev_job;

void (* function)(void);

};

Resources are described by the data type KERN resource t shown in listing
2.2. The field available is νR, and, the field ceiling is R.

Listing 2.2: KERN resource t

typedef struct

{

U32 available;

U32 *ceiling;

} KERN_resource_t;

Listing 2.3 shows the memory which is statically allocated to hold resource
definitions. The maximum number of resources that jobs can use is determined
by MAX NUMBER RESOURCES.

This constant is determined by the SDL tool. The array the resources

holds the details of all the defined resources. The variable resource index is
used to find the next entry in the resources which has not been allocated.
See listing 2.7 for the creation of resources.

Listing 2.3: Resource globals

static KERN_resource_t the_resources[MAX_NUMBER_RESOURCES];

static U32 resource_index;

The SRP algorithm requires a system ceiling, π, which is implemented as a
global variable shown in listing 2.4.

Listing 2.4: system ceiling

static U32 system_ceiling;

Moving on to the code which implements the behaviour of the SRP algo-
rithm, we need to provide functions for requesting and releasing the resources
that applications can use; we also need to be able to initialise a variable of the
type KERN resource t, and we need to alter the code which handles possible
preemptions so that the condition π(J) ≥ π is true for any job J which wants
to preempt the current job.

The first function we’ll look at is KERN resource request shown in listing
2.5. The operation is quite simple, we save information on the stack that will
be restored when the resource is released with KERN resource release. We
finally update ν(R), RνR

, then possibly π. This function cannot lead to a
preemption since π is never lowered.

In the previous step we discussed the dimension of the state stack. We see
that in this step we have increased the amount of information we push and pop.
You can see that we push information onto the stack in KERN resource request,
and pop information off the stack in KERN resource release. The stack works
just fine for us as all resource requests and releases are in LIFO order. Job

34 Step 2

code is constrained to release all requested resources within the time frame of
one job activation so the use of the stack with resources will not be in conflict
with the stack pushes and pops we described in the previous step. The only
question that remains is how to properly dimension the stack for the worst case
scenario. The SDL tool sets the constant MAX STACK DEPTH to be three times
the number of resources plus the number of jobs. This dimension covers maxi-
mum preemption and one request of each resource with no multiple requests of
each resource outstanding, i.e, the resources are being used as mutexes. If this
is not the case then you may want three times the number of resources times
the number of jobs which would cover the resources being used as counting
semaphores with a job only requesting a given resource once during its period.
You will have to dimension this stack to suit your own needs.

Listing 2.5: KERN resource request

void KERN_resource_request (KERN_resource_t *res , U32 amount

)

{

U32 resource_ceiling ;

system_lock ();

stack_push ((void *) system_ceiling);

stack_push ((void *)res ->available);

stack_push(res);

res ->available = res ->available - amount;

resource_ceiling = res ->ceiling[res ->available];

if(resource_ceiling > system_ceiling)

{

system_ceiling = resource_ceiling ;

}

system_unlock ();

}

The function KERN resource release shown in listing 2.6 restores the SRP
state to that which it was before the most previous KERN resource request.
Here π can be lowered which means that a preemption is possible.

Listing 2.6: KERN resource release

void KERN_resource_release (void)

{

KERN_resource_t *res;

U32 old_system_ceiling;

system_lock ();

res = stack_pop ();

res ->available = (U32)stack_pop ();

old_system_ceiling = system_ceiling;

system_ceiling = (U32)stack_pop ();

if(system_ceiling < old_system_ceiling)

2.4. Implementation 35

{

system_unlock ();

job_preempt ();

}

else

{

system_unlock ();

}

}

Now we look at the function KERN resource create (listing 2.7) which
is used to initialise variables of the type KERN resource t. The ceiling

field is a pointer to an array of 32-bit unsigned integers. In the function
KERN job create (listing 2.8) we see that ∀i, π(Ji) = 0xffffffff −Di. Here
we assume the processor running the kernel is 32-bit. Since these preemption
levels, π(J), make up the ceiling table entries, we have to be careful that we
calculate them in the same way.

The SDL tool automatically creates the ceiling tables which are passed to
KERN resource create. Just like the case with calls to KERN job create, the
resources are created before scheduling starts. This means that the system is
essentially locked and the kernel can be sure that any code that executes will
not be interrupted. If you wanted to call KERN resource create from your
own code then it would be wise to surround the function call with calls to
KERN system lock and KERN system unlock. You would also need to ensure
that the constant MAX NUMBER RESOURCES was dimensioned properly.

Listing 2.7: KERN resource create

KERN_resource_t *KERN_resource_create(U32 available , U32 *

ceiling)

{

KERN_resource_t *res;

if(resource_index > MAX_NUMBER_RESOURCES - 1)

{

return NULL;

}

res = &the_resources[resource_index ++];

res ->available = available;

res ->ceiling = ceiling;

return res;

}

The function responsible for job creation (listing 2.8) is updated to give
each job its preemption level — π(J). We assume a 32-bit processor when we
define the preemption level to be 0xffffffff - relative deadline.

Listing 2.8: KERN job create

KERN_job_t *KERN_job_create (U32 period , U32

relative_deadline , void (* function)(void),

KERN_job_type_t type)

{

36 Step 2

KERN_job_t *job;

if(job_index > MAX_NUMBER_JOBS - 1)

{

return NULL;

}

job = &the_jobs[job_index ++];

job ->type = type;

job ->period = period;

job ->relative_deadline = relative_deadline;

job ->function = function;

job ->preemption_level = 0xffffffff - relative_deadline;

if(job ->type == PERIODIC_JOB)

{

job ->absolute_deadline = system_time + job ->

relative_deadline;

job_arrive(job);

}

return job;

}

Finally, we only have to make changes to the preemption logic so that the
SRP condition that π(J) ≥ π always holds. Listing 2.9 shows the new version of
KERN job preempt. The only addition is just this SRP preemption condition:
(system ceiling < pending jobs list->preemption level).

Listing 2.9: KERN job preempt

static void job_preempt (void)

{

system_lock ();

for (;;)

{

if(pending_jobs_list)

{

if(! current_job ||

#if defined OPT_EDF_SCHEDULING

((current_job ->absolute_deadline >

pending_jobs_list ->absolute_deadline) &&

#elif defined OPT_DM_SCHEDULING

((current_job ->relative_deadline >

pending_jobs_list ->relative_deadline) &&

#else

#error "no scheduler defined"

#endif

(system_ceiling < pending_jobs_list ->

preemption_level)))

{

/* We need to preempt the currently executing

job */

/* Remember the current job so we can return

to executing it later */

2.4. Implementation 37

stack_push(current_job);

/* Get the new current job */

current_job = job_list_unlink (&

pending_jobs_list);

#ifdef OPT_USE_HOOKS

HOOK_job_start(current_job);

#endif

system_unlock ();

/* Start executing the new current job */

current_job ->function ();

system_lock ();

job_finish(current_job);

}

else

{

/* No preemption - the current job has the

highest priority.*/

break;

}

}

else

{

/* No preemption - there are no pending jobs */

break;

}

} /* for (;;) */

system_unlock ();

}

STEP 3

In this step we’ll introduce a communications primitive which can
be used by jobs to share information with each other.

Most systems will consist of a collection of cooperating jobs. To facilitate co-
operation, the kernel will have to provide mechanisms for safe synchronisation
and communication. The SRP algorithm will take care of the synchronisation
so we’ll concentrate on communication in this step.

If we looked at every kernel ever written and all of the communications
primitives that they provided we would see that these primitives can be roughly
divided into two groups: shared memory and distributed memory.

A shared memory primitive would allow our jobs to safely access common
areas of memory where they could all read and write. The SRP algorithm which
we saw in the last step is a type of shared memory communication primitive.
So we won’t discuss shared memory primitives any more here.

A distributed memory primitive on the other hand would allow our jobs
to send data to, or receive data from, other jobs. You can think of this as
jobs distributing their data to other jobs. The most common model for dis-
tributed memory primitives is the message passing paradigm which comprises
two operations: send and receive. When we look at various implementations of
these operations we see that they can be synchronous or asynchronous. With
communication primitives, synchronous means “may possibly block”, whereas
asynchronous means “will never block”.

If we receive messages synchronously then we’ll have to block if there is no
message to be read. Imagine no job has sent us a message so we’re forced to
wait until the first message arrives. Should there be a message ready to be
received then the primitive will immediately return with a message.

When sending messages synchronously we can block until the the job we
are sending to receives the message. This synchronous send is sometimes called
a rendezvous and it allows jobs to both communicate and synchronise. The
synchronisation aspect is useful as each job knows the general status of the
other when they start to execute instructions after the send or receive calls.

With regards to real-time systems and synchronous communications, the
main worry is trying to bound the amount of time jobs are blocked. If we
cannot calculate an upper bound then there is no way to analyse the feasibility
of a job set and this means we’ll be forced into using asynchronous operations.

The way that asynchronous primitives are implemented differ from system
to system but we can easily identify two implementation flavours.

One way to implement send and receive is as function calls which return to
the caller with some indication of success. The function which sends messages
would always return a success code (unless there was not enough room to hold
data). The function used to receive data could possibly return an error code in-
dicating that there was no message to be received. This type of implementation
is very much in the spirit of traditional application program design.

Another way of implementing asynchronous send and receive operations is
to have the job register callback functions which would be executed when the
send or receive had been successfully completed. This type of implementation
would lead to a more event-driven type of system design. It is almost as if
communication was modelled in terms of software interrupts.

39

40 Step 3

3.1 Cyclical Asynchronous Buffers

The year 1989 saw the introduction of Cyclical Asynchronous Buffers (CAB)
[Cla89]. A CAB is an asynchronous distributed memory communications mech-
anism. Furthermore, communication is between one sender and several re-
ceivers, i.e. it is a broadcast mechanism. Figure 3.1 shows a CAB C which has
one sending job J1, and two receiving jobs J2 and J3.

CJ1 J2

J3

Figure 3.1: A Simple CAB example.

A CAB can be thought of as a communications channel which is used to
send and receive buffers. We’ll use the term buffer and not signal because the
CAB’s communication semantics are not the same as those of traditional signal
primitives.

With standard signal reception, the signal is consumed — a signal can be
received only once. A buffer sent with a CAB can be received any number of
times. Actually, it may be the case that a buffer is never be received. Whenever
a job receives a buffer from a CAB it is given the last buffer sent to the CAB. A
job which receives buffers at a higher frequency than they are sent will receive
the same buffer several times. If buffers are sent at a higher frequency than
they are received then some buffers will be skipped over and never received.
If several jobs try to receive a buffer at the same time then they may actually
get the same buffer.

These semantics won’t work for some applications but it does allow the
sending job and all the receiving jobs to have independent periods of activation.

To give an example, imagine we have three environmental variables con-
trolled by a system, that is to say three “things” in the environment which
can be sampled with sensors or manipulated with servos. Let’s create a job
for each variable and call them J1, J2 and, J3. The sole purpose of each job
is to make decisions with regards to what kind of manipulation is needed to
keep the variable controlled. In some cases it might be useful to have a higher
level job which tried to control the system as a whole. Think of J1, J2 and, J3
making local decisions and a new job J4 making global decisions. Figure 3.2
shows this graphically.

If J4 is going to make good decisions then it needs to be updated when
the state of the world changes. The obvious design is to let the local decision
makers inform J4 whenever the state of their little part of the world is altered.
In the worst case J4 will need to be communicated with at each activation
period of J1, J2 and, J3. Looking at table 3.1 we see that if we used traditional
signals then J4 would need quite a large number of signal buffers in its input
queue, and, it would have to spend a lot of time receiving messages every period
in order to avoid an overflow of signal buffers. If CABs were used on the other

3.1. Cyclical Asynchronous Buffers 41

hand then only three CABs with three buffers each would be needed and J4
would need to receive a maximum of three buffers during its period.

C1C2C3

J1J2J3

J4J4J4

Figure 3.2: Using a CAB for multilevel control.

Table 3.1: Multilevel control CAB example.

Job Function Frequency

J1 Local decision maker 200Hz
J2 Local decision maker 150Hz
J3 Local decision maker 10Hz
J4 Global decision maker 1Hz

The CAB manages the memory used for the buffers. This means that when
the CAB is created then it has to be given an amount of memory which will
cover the application’s needs.

CABs are implemented in a traditional function call model, jobs call CAB
functions which return when the operation is completed.

When we want to send a message with a CAB we first need to reserve a
buffer. This operation should return a buffer from the CAB’s free list. After
the buffer has been written to, we then use the put operation which makes
that buffer the buffer the most recently written to. The previously most recent
buffer is returned to the free list if there is no job reading from it.

1. “Reserve” a free buffer.

2. Copy data to be sent into the buffer.

3. “Put” the buffer

When we receive from a CAB we use the get operation to give us the most
recently written to buffer. When we have finished reading we use the unget
operation which checks to see if the buffer is still the most recently written to.
If it is not and there is nobody else is reading the buffer then we can move the
buffer to the free list.

1. “Get” the most recently written to buffer.

2. Copy/process data contained within the buffer.

3. “Unget” the buffer.

42 Step 3

Now we know how to read and write buffers we can consider how to dimen-
sion the CAB so that there is always a buffer on the free list when we reserve
so that operation will never block. A get will never block if it follows a put so
we need one write before any reads. Either that or we return a special value to
signify no buffer has been written to. The number of buffers we need is equal
to one plus the number of concurrent read and writes that can be ongoing at
any one time.

3.2 Implementation

The implementation of the CAB primitives is fairly independent of the kernel.
The only functions that are needed are system lock and system unlock.

When trying to understand the code, the place to look at first is the data
structure used to represent a CAB. Listing 3.1 shows two data structures:
KERN cab buffer and KERN cab t. The structure used to represent messages
that jobs will send to each other is KERN cab buffer. Here is a description of
what each part of that structure is used for:

next This is used to link free (unused) buffers on a special linked list.

use counter The number of jobs receiving this buffer is held here.

data This is the buffer’s payload.

All of the bookkeeping associated with a CAB is stored in the structure
KERN cab t:

number of buffers How many buffers are connected to this CAB.

most recent The last buffer that was sent (put).

free list This is the linked list of buffers which are free to be allocated with
KERN cab reserve.

Listing 3.1: KERN cab t and KERN cab buffer t

typedef struct KERN_cab_buffer KERN_cab_buffer_t;

struct KERN_cab_buffer

{

KERN_cab_buffer_t *next;

U32 use_counter;

U8 data [1];

};

typedef struct

{

U32 number_of_buffers;

KERN_cab_buffer_t *most_recent;

KERN_cab_buffer_t *free_list;

} KERN_cab_t;

To receive a message from the CAB we use the functions KERN cab get and
KERN cab unget.

3.2. Implementation 43

We start with KERN cab get shown in listing 3.2. Here we see the usual
surrounding calls to system lock and system unlock to make the function
reentrant. The meat of the function is simply concerned with returning a
pointer to the most recently sent buffer. If no buffer has been sent, then
we can only return a NULL pointer and hope the calling job can handle this
case. Since we’re implementing an asynchronous communications primitive,
we cannot block. If there is a most recently sent buffer then we increment the
buffers use counter field which tells the system how many jobs are receiving
this buffer. You’ll see this counter being used in the function KERN cab unget

(listing 3.3).

Listing 3.2: KERN cab get

KERN_cab_buffer_t * KERN_cab_get(KERN_cab_t *cab)

{

KERN_cab_buffer_t *buffer;

system_lock ();

buffer = cab ->most_recent;

if(! buffer)

{

goto out;

}

buffer ->use_counter ++;

out:

system_unlock ();

return buffer;

}

Moving on to KERN cab unget shown in listing 3.3 we see the latter half of
message reception. Again we see this is a reentrant function as we are using
system lock and system unlock. Between these calls we check to see if the
buffer which has been received has no other receivers and it is not the most
recently sent buffer. If this is the case then it is safe to recycle this buffer by
moving it onto the CAB’s free buffer list.

Listing 3.3: KERN cab unget

void KERN_cab_unget(KERN_cab_t *cab , KERN_cab_buffer_t *

buffer)

{

system_lock ();

if(!--buffer ->use_counter && buffer != cab ->most_recent)

{

buffer ->next = cab ->free_list ->next;

cab ->free_list = buffer;

}

system_unlock ();

}

When we want to send a message we call KERN cab reserve (listing 3.4),
fill in the payload details and when we are ready we call KERN cab put (listing
3.5)

Reserving a buffer is easy. We take the first element of the free list. If this
list is empty then we have incorrectly dimensioned the buffer (see listing 3.6).
The allocated buffer, or NULL in the case of error, is returned to the caller.

44 Step 3

Listing 3.4: KERN cab reserve

KERN_cab_buffer_t * KERN_cab_reserve (KERN_cab_t *cab)

{

KERN_cab_buffer_t *buffer;

system_lock ();

buffer = cab ->free_list;

if(! buffer)

{

/* This is due to the cab being wrongly dimensioned */

goto out;

}

cab ->free_list = cab ->free_list ->next;

out:

system_unlock ();

return buffer;

}

Wemake this allocated buffer available to callers of KERN cab get by setting
the CAB’s most recent field to be this buffer. The previous “most recent”
buffer can be recycled if no job is reading it. All of this is done by KERN cab put.

Listing 3.5: KERN cab put

void KERN_cab_put(KERN_cab_t *cab , KERN_cab_buffer_t *buffer

)

{

system_lock ();

if(cab ->most_recent)

{

if(!cab ->most_recent ->use_counter)

{

/*

* Since no jobs are using the previously "most

recent" buffer ,

* we free it.

*/

cab ->most_recent ->next = cab ->free_list;

cab ->free_list = cab ->most_recent;

}

}

cab ->most_recent = buffer;

system_unlock ();

}

The final part of the implementation is actually the first function called for
any CAB. KERN cab create initialises all the memory associated with a CAB.
The function is shown in listing 3.6. The function is given a pointer to a block
of memory which is large enough to hold all of the buffers and a pointer to one
KERN cab t structure. Each single buffer needs sizeof(KERN cab buffer t)

+ buffer size - 1 bytes (see figure 3.3).

We take the memory argument and make the CAB’s free list point to this
block. We then initialise this block so that it looks like a linked list of free
CAB buffers. The three lines after the for loop take care of the last entry in

3.2. Implementation 45

• Extra byte included in sizeof(KERN cab buffer t)

• payload data

• buffer bookkeeping

sizeof(KERN cab buffer t) + buffer size − 1

Figure 3.3: CAB buffer dimensioning.

the free list which is a little bit special because its next pointer is to be set to
NULL.

Listing 3.6: KERN cab create

void KERN_cab_create(KERN_cab_t *the_cab , U8 *memory , U32

number_of_buffers , U32 buffer_size)

{

KERN_cab_buffer_t *acab;

U8 *runner;

the_cab ->free_list = (KERN_cab_buffer_t *) memory;

the_cab ->number_of_buffers = number_of_buffers;

the_cab ->most_recent = NULL;

for(runner=memory;

runner < memory +(number_of_buffers -1)*(sizeof(

KERN_cab_buffer_t) + buffer_size - 1);

runner += sizeof(KERN_cab_buffer_t) + buffer_size - 1)

{

acab = (KERN_cab_buffer_t *) runner;

acab ->next = (KERN_cab_buffer_t *)(runner + sizeof(

KERN_cab_buffer_t) + buffer_size - 1);

acab ->use_counter = 0;

}

acab = (KERN_cab_buffer_t *) runner;

acab ->next = NULL;

acab ->use_counter = 0;

}

The memory is now in a format suitable for the CAB functions. The only
point left to discuss is who performs the CAB initialisation. Just like the
jobs and the resources it is the SDL tool which generates the code which calls
KERN cab create before the scheduler starts. Again, as with the configuration
of jobs and resources, a designer doesn’t have to use SDL. In such a case, the
designer would have to make sure that a CAB was initialised before it was
first referenced. The function KERN cab create doesn’t need to be protected
with a system lock system unlock mutex. As far as the number of buffers
needed to avoid blocking, it is the number of concurrent users of the CAB plus
one. To see why, imagine two jobs using a CAB, one is sending and the other is

46 Step 3

receiving. The receiver has called KERN cab get and has one buffer. The writer
then sends a message and the buffer it uses becomes the “most recent” buffer.
The total number of buffers used is now two. If the writer now wants to send
another message then it needs a free buffer returned from KERN cab reserve

which gives us a total of three used buffers. These two jobs will never need
more than three buffers if the writer does not have several ongoing calls to
KERN cab reserve.

THE SDL TOOL

The SDL tool was designed to automate the configuration of the kernel. The
use of the tool is not compulsory in any way.

A.1 Using SDL

The tool is given two files as input:

• a description of the system’s jobs, resources, and CABs.

• a skeleton kernel file.

With this input the SDL tool generates code which when combined with the
skeleton kernel file will contain code for the kernel and the initialisation of all
the jobs, resources, and CABs. The skeleton kernel file will be the same for
each system which uses the same version of the kernel. This file is in fact the
C code which has been described in the three steps outlined in this book. The
description input file, on the other hand, will most likely be different for each
system. This file is called the SDL file.

The input SDL file is read in by the tool and parsed according to the
grammar shown in figure A.1.

Figure A.1: SDL Grammar in BNF.

〈start〉 → 〈options〉 〈resources〉 〈cabs〉 〈macros〉 〈jobs〉
〈options〉 → ǫ | 〈options list〉

〈options list〉 → 〈option〉 | 〈options list〉 〈option〉
〈option〉 → “option” ID

〈resources〉 → ǫ | 〈resources list〉
〈resources list〉 → 〈resource〉 | 〈resources list〉 〈resource〉

〈resource〉 → “resource” ID “count” NUM “available” NUM
〈cabs〉 → ǫ | 〈cabs list〉

〈cabs list〉 → 〈cab〉 | 〈cabs list cab〉
〈cab〉 → “cab” ID “count” NUM

〈macros〉 → ǫ | 〈macros list〉
〈macros list〉 → 〈macro〉 | 〈macros list macro〉

〈macro〉 → “macro” ID 〈use definition list〉
〈jobs〉 → ǫ | 〈jobs list〉

〈jobs list〉 → 〈job〉 | 〈jobs list〉 〈job〉
〈job〉 → “periodic” ID “deadline” NUM “period” NUM “entrypoint” ID

| “periodic” ID “deadline” NUM “period” NUM “entrypoint” ID
〈use definition list〉
| “sporadic” ID “deadline” NUM “period” NUM “entrypoint” ID
| “sporadic” ID “deadline” NUM “period” NUM “entrypoint” ID
〈use definition list〉

〈use definition list〉 → 〈use definition〉 | 〈use definition list〉 〈use definition〉
〈use definition〉 → “uses” NUM “of” ID | “uses” ID

47

48 The SDL Tool

An example SDL file is shown in listing A.1. The lines that start with “#”
are comments.

Listing A.1: Example SDL file.

-*-sdl -*-

app_main.sdl

#

#

Options

#

We must define either EDF or DM scheduling.

#

option edf

#option dm

Another option is to enable HOOKS.

Uncomment the following line to see what hooks do. Look at

the jobs.c

file for the functions that start with the name HOOK_ then

look at

kernel.c to see when these functions are called.

#

#option hooks

resources

#

We ’ll need a resource called mutex which has a maximum of

one unit

available and when the system starts there will be one

unit available.

#

resource mutex count 1 available 1

#

CABs

#

Here we define a CAB which will be used to send and

receive integers (32 bit).

We ’ll call it temp. The size of an integer is 4 so the

count will be 4.

cab temp count 4

#

macros

#

You can combine CABS and resources into a macro which

makes the next part

where we define jobs easier. Have a look at the SDL code

if you want to see

what they do. They ’re just there to make life a little bit

easier , they are

not essential.

A.1. Using SDL 49

#

jobs

#

A job can be periodic or sporadic. Each job has a name , a

deadline , a period ,

and an entrypoint. We can also provide a list of CABs and

resources that the

job uses.

#

j1 is a periodic job to be executed every 100 clock ticks

with a relative

deadline of 100 ticks. The C function which does the job ’s

work is called

"job1" (defined in jobs.c). j1 uses 1 unit of the resource

mutex , and will

perform at most one CAB send or receive at the same time.

periodic j1 deadline 100 period 100 entrypoint job1 uses 1

of mutex uses 1 of temp

j2 is pretty similar to j1.

periodic j2 deadline 200 period 200 entrypoint job2 uses 1

of mutex uses 1 of temp

s1 is a sporadic job which is connected to an interrupt.

The connection is made in the BSP. You can see that this

job uses no resources

or CABs.

sporadic s1 deadline 1000 period 1000 entrypoint sporadic1

When the example SDL file is processed the output is a C file which is the
skeleton kernel file which has a SDL generated prologue and epilogue.

The prologue that would be generated in this case is shown in listing A.2
We can see that this matches the input SDL file and that the definitions here
will control the scheduling algorithm and correctly dimension the arrays used
to store job and resource descriptions, and the stack used to store system state.

Listing A.2: SDL output, prologue

#define OPT_EDF_SCHEDULING

#define MAX_NUMBER_JOBS 3

#define MAX_NUMBER_RESOURCES 1

#define MAX_STACK_DEPTH 6

The epilogue is shown in listing A.3. All of the jobs, resources, and CABs are
defined as global variables which point to the storage used to hold their configu-
rations. This memory is also configured with the kernel functions KERN create cab,
KERN create resource, and KERN create job. The hardware is initialised
with the BSP functions and the first job is scheduled with a forced preemption.

Listing A.3: SDL output, epilogue

KERN_resource_t *mutex;

U32 mutex_ceiling [2] = {4294967195U, 0U};

extern void job1(void);

KERN_job_t *j1;

50 The SDL Tool

extern void job2(void);

KERN_job_t *j2;

KERN_cab_t temp;

static U8 temp_buffer [38];

extern void sporadic1(void);

KERN_job_t *s1;

void KERN_init(void)

{

mutex = KERN_resource_create(1, mutex_ceiling);

j1 = KERN_job_create (100, 100, job1 , PERIODIC_JOB);

j2 = KERN_job_create (200, 200, job2 , PERIODIC_JOB);

KERN_cab_create (&temp , temp_buffer , 2, 4);

s1 = KERN_job_create (1000 , 1000, sporadic1 ,

SPORADIC_JOB);

BSP_init_exception_vectors ();

BSP_init_clock ();

system_unlock ();

job_preempt ();

}

A.2 Implementation

The SDL tool is created with the help of the compiler tools LEX and YACC.
To describe the code which implements the tool would mean doubling the size
of this book. There are around 600 lines of code in the kernel and around about
800 lines of code in the SDL tool.

As you can see from the tool output it is a fairly simple translator. The
only reasonably interesting part of the tool is the calculation of the resource
ceiling tables; even this is quite simple and has been described earlier in the
book.

THE BSP AND KERNEL API

B.1 BSP deadline overrun

Name BSP deadline overrun

Synopsis void BSP deadline overrun(KERN job t *j);

Description This function is called if a job misses its deadline. The argument
passed is the value returned from KERN job create used to create the
job. This is a perfect point to try to recover from a timing failure which
usually will be a programming error or an overload situation. At every
clock tick the kernel will check for missed deadlines. If several jobs miss
their deadlines then several calls to this function will be made. This
function will be called a maximum of once for a given job during one of
its periods.

See also KERN job create

B.2 BSP disable interrupts

Name BSP disable interrupts

Synopsis void BSP disable interrupts(void);

Description This function is only called by the kernel’s internal function
system lock which, along with its sister function system unlock, im-
plement a mutual exclusion mechanism used by the kernel to serialise the
execution of kernel code which can alter the kernel’s internal data struc-
tures. Any interrupts which are completely independent of the kernel and
the jobs it schedules are exempt from the functions BSP enable interrupts

and BSP disable interrupts.

See also BSP enable interrupts

B.3 BSP enable interrupts

Name BSP enable interrupts

Synopsis void BSP enable interrupts(void);

Description This function is called by the kernel when it has finished up-
dating its internal data structures. It is called once by the function
KERN init as part of the kernel initialisation. All other calls to the func-
tion BSP enable interrupts function are called by the kernel’s internal
function system unlock which, along with its sister function system lock,
implement a mutual exclusion mechanism used by the kernel to seri-
alise the execution of kernel code which can alter the kernel’s inter-
nal data structures. Any interrupts which are completely independent
of the kernel and the jobs it schedules are exempt from the functions
BSP enable interrupts and BSP disable interrupts.

51

52 The BSP and Kernel API

See also BSP disable interrupts, KERN init

B.4 BSP init exception vectors

Name BSP init exception vectors

Synopsis void BSP init exception vectors(void);

Description This function is called by the kernel function KERN init to ini-
tialise the interrupt controller. The word “interrupt” was not used in the
name because it is sometimes useful to have exception vectors initialised
so as to catch any programming errors. It is assumed that interrupts
which use kernel functions (KERN clock tick, KERN job arrive) are dis-
abled and only enabled when the KERN init function calls
BSP enable interrupts.

See also BSP enable interrupts, BSP disable interrupts, KERN init

B.5 BSP init clock

Name BSP init clock

Synopsis void BSP init clock(void);

Description This function is called by KERN init to initialise the real-time
clock hardware. It is assumed that the real-time clock will generate in-
terrupts at a fixed frequency. The period between these interrupts is
the time base for any period given in calls to the KERN create job func-
tion. The interrupt handler which will be part of the BSP should call the
function KERN clock tick at every interrupt.

See also KERN clock tick, KERN create job, KERN init

B.6 HOOK job arrive

Name HOOK job arrive

Synopsis void HOOK job arrive (KERN job t *job);

Description This function is called when a periodic job moves from the in-
active state to the pending state, i.e., when the job’s period starts. This
function will also be called when a sporadic job is moved into the pending
state. The function argument is the same value that was returned by the
call to KERN create job when the job was created.

See also KERN create job

B.7 HOOK job finish

Name HOOK job finish

Synopsis void HOOK job finish (KERN job t *job);

B.8. HOOK job start 53

Description This function is called by the kernel when a job finishes execu-
tion. The function argument is the same value that was returned by the
call to KERN create job when the job was created. When this function
returns, a preemption is possible.

See also KERN create job

B.8 HOOK job start

Name HOOK job start

Synopsis void HOOK job start (KERN job t *job);

Description This function is called by the kernel just before a job starts
execution. The function argument is the same value that was returned
by the call to KERN create job when the job was created.

See also KERN create job

B.9 KERN cab buffer data

Name KERN cab buffer data

Synopsis void * KERN cab buffer data (KERN cab buffer t *buffer);

Description Once a buffer has been retrieved from the CAB with a call to
KERN cab get, the actual payload data can be gotten at with a call to
KERN cab buffer data. The following example code shows how this is
done.

if(!(buffer = KERN_cab_get(&temp)))

{

return;

}

data = (U32*)KERN_cab_buffer_data(buffer);

See also KERN cab get

B.10 KERN cab create

Name KERN cab create

Synopsis void KERN cab create(KERN cab t *the cab, U8 *memory,

U32 number of buffers, U32 buffer size);

Description Before any communication can be performed with a CAB, it
must be initialised. The parameters are used for the following:

the cab This is the CAB we will initialise.

memory This is a pointer to a memory area which will hold all of the
CAB’s buffers. The size of this area in bytes can be calculated as
follows:

number of buffers∗(sizeof(KERN cab buffer t)+buffer size−1)

54 The BSP and Kernel API

number of buffers The number of buffers we need is equal to the num-
ber of concurrent read and writes that can be ongoing at any one
time plus one.

buffer size The size of each buffer in bytes.

See also KERN cab get, KERN cab reserve

B.11 KERN cab get

Name KERN cab get

Synopsis KERN cab buffer t * KERN cab get(KERN cab t *cab);

Description If we want to read a buffer from a CAB then we need to call
KERN cab get. This will return the most recently written to buffer. When
we’re finished we need to call KERN cab unget.

if(!(buffer = KERN_cab_get(&temp)))

{

return;

}

...

KERN_cab_unget(&temp, buffer);

See also KERN cab unget

B.12 KERN cab put

Name KERN cab put

Synopsis void KERN cab put(KERN cab t *cab,

KERN cab buffer t *buffer);

Description We call KERN cab put to indicate to the CAB that the buffer is
to be made the least recently written buffer. This means that all jobs
which call KERN cab get will have the buffer returned to them until the
next call to KERN cab put.

buffer = KERN_cab_reserve(&temp);

data = (U32 *)KERN_cab_buffer_data(buffer);

*data = long_computation();

KERN_cab_put(&temp, buffer);

See also KERN cab reserve

B.13 KERN cab reserve

Name KERN cab reserve

Synopsis KERN cab buffer t * KERN cab reserve(KERN cab t *cab);

B.14. KERN cab unget 55

Description We call KERN cab reserve when we want to get a free buffer
from a CAB.

buffer = KERN_cab_reserve(&temp);

data = (U32 *)KERN_cab_buffer_data(buffer);

*data = long_computation();

KERN_cab_put(&temp, buffer);

See also KERN cab put

B.14 KERN cab unget

Name KERN cab unget

Synopsis void KERN cab unget(KERN cab t *cab,

KERN cab buffer t *buffer);

Description When we’ve completed processing a CAB buffer we indicate to
the CAB that this buffer may be a candidate for recycling. We can do
this by calling KERN cab unget.

if(!(buffer = KERN_cab_get(&temp)))

{

return;

}

...

KERN_cab_unget(&temp, buffer);

See also KERN cab get

B.15 KERN clock tick

Name KERN clock tick

Synopsis void KERN clock tick (void);

Description This function should be called by the real-time clock interrupt
service routine which is defined by the BSP. Calling this function may
possibly lead to a preemption as the function will check all inactive jobs
to see if their period has started. This function will also check for deadline
overruns so the function BSP deadline overrun may be called.

See also None.

B.16 KERN init

Name KERN init

Synopsis void KERN init(void);

56 The BSP and Kernel API

Description The BSP should call this function once the machine has booted
and the stack is configured. This function starts by calling the
KERN job create function once for each job defined. The function then
calls the BSP function BSP init exception vectors then
BSP init clock. The system is unlocked with a call to
BSP enable interrupts, then the highest priority job is started.

See also None.

B.17 KERN job arrive

Name KERN job arrive

Synopsis void KERN job arrive (KERN job t *job);

Description This function is called to release a sporadic job. This func-
tion is reentrant and should be called with interrupts enabled. The
argument passed to the function is the return value from the call to
KERN job create used to create the sporadic job.

See also KERN job create

B.18 KERN job create

Name KERN job create

Synopsis KERN job t *KERN job create (U32 period,

U32 relative deadline, void (*function)(void), KERN job type t

type);

Description This function is used to create periodic and sporadic jobs. The
period and relative deadline arguments are multiples of the BSP’s
real-time clock interrupt period. The function argument is the job’s
entrypoint. The type argument is either PERIODIC JOB or SPORADIC JOB.
The return value of this function is used as an argument to the HOOK

functions or passed as an argument to the KERN job arrive and
BSP deadline overrun functions.

See also BSP deadline overrun, HOOK job arrive, HOOK job finish,
HOOK job start, KERN job arrive

B.19 KERN resource create

Name KERN resource create

Synopsis KERN resource t *KERN resource create (U32 available, U32

*ceiling);

Description Before any resource is used with KERN resource request and
KERN resource release, it must be created with KERN resource create.
The argument available tells the system the maximum number of units
of this resource will be available at any given time. The ceiling ar-
gument is an array of unsigned 32-bit numbers which give the resource

B.20. KERN resource release 57

ceiling for a given number of units being available for the resource. If
available was 17, then the ceiling array would need to have 18 ele-
ments — the extra element is for zero meaning no units left. An example
use of resources would be as a mutex. In this case the available argu-
ment will be 1 so that only one job request can be outstanding at any
given time. The ceiling array would have a first element so high, all
other jobs which would want to use the mutex would block. The next el-
ement in the array would be so low as to not block any job which wanted
access to the mutex. Example:

U32 mutex_ceiling[2] = {4294967195U, 0U};

...

mutex = KERN_resource_create(1, mutex_ceiling);

See also KERN resource release, KERN resource request

B.20 KERN resource release

Name KERN resource release

Synopsis void KERN resource release (void);

Description This function is used to release the resources which were re-
quested with the calling job’s closest previous call of the function
KERN resource request. Since the order of resource release is the oppo-
site of resource request there is no need for the system designer to identify
which resource will be released. The kernel can keep all the information
it needs to match releases to the correct requests with a stack data struc-
ture. The following function is used to safely swap the contents of two
shared variables a and b:

void job (void *dummy)

{

int temp;

KERN_resource_request(a_mutex, 1);

KERN_resource_request(b_mutex, 1);

temp = a;

a = b;

b = temp;

KERN_resource_release(); /* releases b_mutex */

KERN_resource_release(); /* releases a_mutex */

}

It is important to remember that all resources which are requested during
one activation period must be released during the same period. As a
consequence of this call, the system ceiling may be lowered which will
mean the current job may be preempted.

See also KERN resource request

58 The BSP and Kernel API

B.21 KERN resource request

Name KERN resource request

Synopsis void KERN resource request (KERN resource t *res,

U32 amount);

Description This function is called to request amount units of the resource
res. With the Stack Resource Policy there is a guarantee that the calling
job will not block. As a side effect of this function call, the system ceiling
may be raised. Only jobs with a preemption level higher than the system
ceiling can preempt the job which called this function.

See also KERN resource release

NOMENCLATURE

µR(J) The number of units of resource R that the job J will request.

νR Current amount of available units for resource R.

π The maximum of all the current ceilings of all the resources.

RνR
The preemption ceiling for resource R which currently has νR units
available.

π(J) The preemption level for job J .

C Job execution time.

D Relative deadline.

J A job.

NR Maximum number of units for a resource R.

R A resource.

T Job period.

59

BIBLIOGRAPHY

[Bak91] T. P. Baker. Stack-based scheduling of real-time processes. Journal
of Real-Time Systems, 1991.

[But97] Giorgio C. Buttazzo. Hard Real-time Computing Systems. Kluwer,
1997.

[CL73] J.W. Layland C.L. Liu. Scheduling Algorithms for Multiprogramming
in a Hard-Real-Time Environment. Journal of the Association for
Computing Machinery, Vol. 20, No.1, pp. 46-61, January 1973.

[Cla89] D. Clark. Hic: An Operating System for Hierarchies of Servo Loops.
Proceedings of the IEEE International Conference on Robotics and
Automation, 1989.

[Gal95] Bill O. Gallmeister. POSIX.4: Programming for the Real World.
O’Reilly and Associates, 1995.

[JL82] J.W. Whitehead J. Leung. On the Complexity of Fixed Priority
Scheduling of Periodic Real-time Tasks. Performance Evaluation 2(4),
July 1982.

[KJ93] D.L. Stone K. Jeffay. Accounting for Interrupt Handling Costs in
Dynamic Priority Task Systems. Proceedings of the IEEE Real-time
System Symposium, pp. 212-221, December 1993.

[SZ89] H. Kopetz A. Damm C. Koza M. Mulazzani W. Schwabla C. Senft
and Z. Zainlinger. Distributed Fault-tolerant Real-time Systems; The
MARS Approach. IEEE Micro 9(1), February 1989.

61

INDEX

BSP deadline overrun, 51
BSP disable interrupts, 51
BSP enable interrupts, 51
BSP init clock, 52
BSP init exception vectors, 52
HOOK job arrive, 52
HOOK job finish, 52
HOOK job start, 53
KERN cab buffer data, 53
KERN cab buffer t, 42
KERN cab create, 45, 53
KERN cab get, 43, 54
KERN cab put, 44, 54
KERN cab reserve, 43, 54
KERN cab t, 42
KERN cab unget, 43, 55
KERN clock tick, 55
KERN init, 55
KERN job arrive, 26, 56
KERN job create, 20, 35, 56
KERN job type t, 18
KERN job t, 18, 32
KERN resource create, 35, 56
KERN resource release, 34, 57
KERN resource request, 34, 58
KERN resource t, 33
MAX NUMBER JOBS, 18, 49
MAX NUMBER RESOURCES, 33, 49
MAX STACK DEPTH, 18, 34, 49
OPT DM SCHEDULING, 49
OPT EDF SCHEDULING, 49
U16, 17
U32, 17
U8, 17
clock tick, 25
current job, 19
inactive jobs list, 19
job add to inactive jobs list, 22
job add to pending jobs list, 20
job arrive, 21
job finish, 23
job index, 19
job list unlink, 23
job preempt, 24, 36
pending jobs list, 19

stack index, 19
stack pop, 19
stack push, 19
stack, 19
system ceiling, 33
system lock, 19
system time, 19
system unlock, 19
the jobs, 19
the resources, 33

ceiling
resource, 29
system, 30

Deadline Monotonic scheduling al-
gorithm, 6

Earliest Deadline First scheduling
algorithm, 7

Job preemption level, 29

Rate Monotonic scheduling algorithm,
5

SDL, 15, 17, 18, 20, 33–35, 45
Stack Resource Policy, 29

63

