Index

Disjunction

The disjunction of a set of subformulas is true if any of the subformulas are true. The symbol we use for disjunction is . The disjunction of zero subformulas is trivially false. The disjunction of a single subformula is equivalent to that subformula.

Examples

	A 
	
	A ∨ ~A
	
	A ∨ B ∨ C
	

Truth Table

The truth table below shows all possible combinations for a binary disjunction. Here t stands for true, and f stands for false.

 A  B  A ∨ B 
fff
ftt
tft
ttt

References

Doets, Kees. From Logic to Logic Programming. MIT Press, 1994.

Index